

Welcome to django-helmholtz-aai’s documentation!

This small generic Django app helps you connect to the Helmholtz AAI and make
use of it’s virtual organizations.

Features

Features include

	ready-to-use views for authentification against the Helmholtz AAI

	a new HelmholtzUser class based upon djangos
User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model and derived from the Helmholtz AAI

	a new HelmholtzVirtualOrganization class based upon djangos
Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group] model and derived from the Helmholtz AAI

	several signals to handle the login of Helmholtz AAI user for your specific
application

	automated synchronization of VOs of on user authentification

Get started by following the installation instructions
and have a look into the Configuration options.

Contents:

	Installation
	Installation from PyPi

	Register your OAuth-Client at the Helmholtz AAI

	Install the Django App for your project

	References

	Configuration options
	Configuration settings

	Customizing the login

	Common problems
	Mapping to existing accounts

	Mapping of multiple accounts

	Too many VOs

	API Reference
	App settings

	Signals

	URL config

	Models

	Views

	Management commands

	Contribution and development hints
	Contributing in the development

Indices and tables

	Index

	Module Index

	Search Page

Installation

To install the django-helmholtz-aai package for your Django project, you need
to follow three steps:

	Install the package

	Register an OAuth-client

	Add the app to your Django project

Installation from PyPi

The recommended way to install this package is via pip and PyPi via:

pip install django-helmholtz-aai

Or install it directly from the source code repository on Gitlab [https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai] via:

pip install git+https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai.git

The latter should however only be done if you want to access the development
versions.

Register your OAuth-Client at the Helmholtz AAI

To install this app in your Django application, you first need to register
an OAuth client for the Helmholtz AAI. In short, this works the following way

	head over to https://login.helmholtz.de

	make sure that you are logged out at the Helmholtz AAI

	click No Acccount? Sign up on the top-right on , and then by

	click on Oauth2/OIDC client Registration

	register your client. For more information on the necessary fields, see
[client-registration] in the Helmholtz AAI docs.

Note

Make sure that you enter the correct return URL which should be
something like
https://<link-to-your-django-website>/helmholtz-aai/auth/.

The /helmholtz-aai/ part is determined by the settings in your URL
configuration down below. But you can also
change this URL or add more once your client has been approved at
https://login.helmholtz.de/oauthhome/

Install the Django App for your project

To use the django-helmholtz-aai package in your Django project, you need to
add the app to your INSTALLED_APPS, configure your urls.py, run the
migration, add a login button in your templates. Here are the step-by-step
instructions:

	Add the django_helmholtz_aai app to your INSTALLED_APPS

	in your projects urlconf (see ROOT_URLCONF [https://django.readthedocs.io/en/stable/ref/settings.html#std-setting-ROOT_URLCONF]), add include
django_helmholtz_aai.urls via:

from django.urls import include, path

urlpatterns += [
 path("helmholtz-aai/", include("django_helmholtz_aai.urls")),
]

Note that the helmholtz-aai/-part has to match what you entered when
you registered your client (see above).

	Run python manage.py migrate to add the
HelmholtzUser and
HelmholtzVirtualOrganization models
to your database

	Add the link to the login view in one of your templates (e.g. in the
login.html template from your LOGIN_URL [https://django.readthedocs.io/en/stable/ref/settings.html#std-setting-LOGIN_URL]), e.g. via

{% load helmholtz_aai %}

 login via Helmholtz AAI

Note

To tell the user why he or should could not login, we are also using
djangos messaging framework. See django.contrib.messages [https://django.readthedocs.io/en/stable/ref/contrib/messages.html#module-django.contrib.messages].
To display these messages, you should add something in your django
template, e.g. something like

{% if messages %}
 <ul class="messages">
 {% for message in messages %}
 <li{% if message.tags %} class="{{ message.tags }}"{% endif %}>
 {{ message }}

 {% endfor %}

{% endif %}

	Make sure to set the HELMHOLTZ_CLIENT_ID
and HELMHOLTZ_CLIENT_SECRET
settings in your settings.py with the username and password you specified
during the client registration.

That’s it! For further adaption to you Django project, please head over to the
Configuration options. You can also have a look into the testproject
in the source code repository [https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai] for a possible implementation.

References

	client-registration

	https://hifis.net/doc/helmholtz-aai/howto-services/

Configuration options

Configuration settings

Most important settings

	HELMHOLTZ_ALLOWED_VOS

	A string of lists specifying which VOs are allowed to log into the website.

	HELMHOLTZ_CLIENT_ID

	Client id for the Helmholtz AAI

	HELMHOLTZ_CLIENT_SECRET

	Client secret for the Helmholtz AAI

Two settings are necessary to use this package, this is the
HELMHOLTZ_CLIENT_ID and the HELMHOLTZ_CLIENT_SECRET that
you specified during the OAuth-Client registration (see Register your OAuth-Client at the Helmholtz AAI).

By default, the website allows all users to login and create an account via the
Helmholtz AAI. This if often not desired and you can modify this with the
HELMHOLTZ_ALLOWED_VOS setting, e.g. something like:

HELMHOLTZ_ALLOWED_VOS = [
 "urn:geant:helmholtz.de:group:hereon#login.helmholtz.de",
]

in your settings.py.

Other settings

Further settings can be used to specify how to connect to the helmholtz AAI and
how to interpret the userinfo of the Helmholtz AAI.

	HELMHOLTZ_AAI_CONF_URL

	openid configuration url of the Helmholtz AAI

	HELMHOLTZ_ALLOWED_VOS_REGEXP

	Regular expressions for VOs that are allowed to login to the website.

	HELMHOLTZ_CLIENT_KWS

	Keyword argument for the oauth client to connect with the helmholtz AAI.

	HELMHOLTZ_CREATE_USERS

	Flag to enable/disable user account creation via the Helmholtz AAI.

	HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED

	Allow duplicated emails for users in the website

	HELMHOLTZ_MAP_ACCOUNTS

	Flag whether existing user accounts should be mapped

	HELMHOLTZ_UPDATE_USERNAME

	Flag whether usernames should be updated from the Helmholtz AAI

	HELMHOLTZ_USERNAME_FIELDS

	Username fields in the userinfo

Customizing the login

If you are using the Helmholtz AAI, you likely want to combine it with the
permission system of your Django project. You may want to set the is_staff
attribute for users of a specific VO, or perform additional actions when a
user logged in for the first time (e.g. send a welcome mail), enters or leaves
a VO.

To perfectly adjust the django-helmholtz-aai framework to your projects need,
you have two choices:

	connect to the signals of the signals module,
see Configuration via Signals

	subclass the
HelmholtzAuthentificationView view,
see Customization via the HelmholtzAuthentificationView

The signals are the recommended way as they provide a more stable interface.
As the django-helmholtz-aai is very new, we cannot guarantee that there
won’t be breaking changes in the
HelmholtzAuthentificationView.

Configuration via Signals

The signals module defines various signal that are
fired on different events:

	aai_user_created

	Signal that is fired when a user has been created via the Helmholtz AAI

	aai_user_logged_in

	Signal that is fired when a user logs in via the Helmholtz AAI

	aai_user_updated

	Signal that is fired when a user receives an update via the Helmholtz AAI

	aai_vo_created

	Signal that is fired if a new Virtual Organization has been created

	aai_vo_entered

	Signal that is fired if a Helmholtz AAI user enteres a VO

	aai_vo_left

	Signal that is fired if a Helmholtz AAI user left a VO

The purpose of these signals should be pretty much self-explanatory.

Examples

Suppose you want users of a specific VO to become superusers. Then you can do
something like this using the aai_vo_entered and
aai_vo_left signals:

from django.dispatch import receiver

from django_helmholtz_aai import models, signals

@receiver(signals.aai_vo_entered)
def on_vo_enter(
 sender,
 vo: models.HelmholtzVirtualOrganization,
 user: models.HelmholtzUser,
 **kwargs,
):
 vo_id = "urn:geant:helmholtz.de:group:hereon#login.helmholtz.de"
 if vo.eduperson_entitlement == vo_id:
 user.is_superuser = True
 user.save()

@receiver(signals.aai_vo_left)
def on_vo_leave(
 sender,
 vo: models.HelmholtzVirtualOrganization,
 user: models.HelmholtzUser,
 **kwargs,
):
 vo_id = "urn:geant:helmholtz.de:group:hereon#login.helmholtz.de"
 if vo.eduperson_entitlement == vo_id:
 user.is_superuser = False
 user.save()

Let’s say you want to display a message in the frontend when a user logged in
for the first time. Here you can use the aai_user_created signal:

from django.contrib import messages

from django_helmholtz_aai import models, signals

@receiver(signals.aai_user_created)
def created_user(
 sender,
 user: models.HelmholtzUser,
 request,
 **kwargs,
):
 messages.add_message(
 request, messages.success, f"Welcome on board {user}!"
)

Customization via the HelmholtzAuthentificationView

Warning

Please bear in mind that this python package is still very new and we
cannot guarantee that there won’t be breaking changes in the
HelmholtzAuthentificationView class.

Another way to customize the login is via the
HelmholtzAuthentificationView. Your
starting point should be the following two methods, one for checking the
permissions and one for performing the request:

	get(request)

	Login the Helmholtz AAI user and update the data.

	has_permission()

	Check if the user has permission to login.

For a more fine-grained control of the authentification (such as user creation
or update), you can make use of the following methods and reimplement to your
needs.

	create_user(userinfo)

	Create a Django user for a Helmholtz AAI User.

	login_user(user)

	Login the Helmholtz AAI user to the Django Application.

	synchronize_vos()

	Synchronize the memberships in the virtual organizations.

	update_user()

	Update the user from the userinfo provided by the Helmholtz AAI.

Example

Let’s say you want to approve users before you let them login to the website.
One possibility is, to create a custom model with reference to a user and
reimplement the
django_helmholtz_aai.views.HelmholtzAuthentificationView.login_user().
Your custom app that reimplements this view then might look like

	models.py

from django.db import models
from django_helmholtz_aai.models import HelmholtzUser

class HelmholtzUserReview(models.Model):
 """A review of a helmholtz user"""

 class ReviewStatus(models.TextChoices):

 accepted = "accepted"
 rejected = "rejected"

 user = models.OneToOneField(HelmholtzUser, on_delete=models.CASCADE)

 review_status = models.CharField(
 choices=ReviewStatus.choices, blank=True, null=True
)

	views.py

from django.contrib import messages
from django_helmholtz_aai.views import HelmholtzAuthentificationView
from django_helmholtz_aai.models import HelmholtzUser
from .models import HelmholtzUserReview

class CustomHelmholtzAuthentificationView(HelmholtzAuthentificationView):
 def login_user(self, user: HelmholtzUser):
 review = HelmholtzUserReview.objects.get_or_create(user=user)[0]
 if (
 review.review_status
 == HelmholtzUserReview.ReviewStatus.accepted
):
 super().login_user(user)
 elif (
 review.review_status
 == HelmholtzUserReview.ReviewStatus.rejected
):
 messages.add_message(
 self.request,
 messages.error,
 f"Your account creation request has been rejected.",
)
 else:
 messages.add_message(
 self.request,
 messages.success,
 f"Your account creation request is currently under review.",
)

	urls.py

from django.urls import include, path
from .views import CustomHelmholtzAuthentificationView

urlpatterns = [
 path(
 "helmholtz-aai/auth/",
 CustomHelmholtzAuthentificationView.as_view(),
),
 path("helmholtz-aai/", include("django_helmholtz_aai.urls")),
]

Common problems

In this document, we collect common problems and questions. If you cannot find
your issue documented in here, you should
create an issue at the source code repository [https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai/issues/new/] and we’ll try to find a solution and update this
document with your problem.

Mapping to existing accounts

When you add this app to an existing django project, you might already have
accounts in your database. If this is the case, you should have a look into
the HELMHOLTZ_MAP_ACCOUNTS configuration variable.

Mapping of multiple accounts

One user can have multiple accounts in the Helmholtz AAI. You can, for
instance create an account via GitHub and through your home institution.
Both accounts can have the same email address. The Helmholtz AAI however
treats them as separate accounts and both have different unique IDs and
belong to different VOs. As we use the ID for mapping a user in the
Helmholtz AAI to a user in Django, and we synchronize the VOs of the
user in the Helmholtz AAI, we have to distinguish the two accounts as well.

As an example: One user can register two accounts in the Helmholtz AAI:

	one via Google

	one via GitHub but with the same Google-Mail

Then the user logs in to your project via the Helmholtz AAI and his Google
account. If the user then logs in to your project via GitHub, this creates
a new account, independent from the first one.

Usually you do not want to have this behaviour as both user-accounts will
then have the same email-address. Therefore this is disabled by default.
However, you can allow the creation of multiple user accounts using the
HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED configuration variable.

Too many VOs

Each time a user account is created, we create the VOs that the user
participates in. These VOs remain, even if one deletes the user account. To
remove these empty VOs, we therefore added the
remove_empty_vos management
command that you can use via python manage.py remove_empty_vos. Or you call
it directly from python, e.g. via:

from django_helmholtz_aai import models
models.HelmholtzVirtualOrganization.objects.remove_empty_vos()

API Reference

	App settings

	Signals

	URL config

	Models

	Views

	Management commands

App settings

This module defines the settings options for the django_helmholtz_aai app.

Data:

	HELMHOLTZ_AAI_CONF_URL

	openid configuration url of the Helmholtz AAI

	HELMHOLTZ_ALLOWED_VOS

	A string of lists specifying which VOs are allowed to log into the website.

	HELMHOLTZ_ALLOWED_VOS_REGEXP

	Regular expressions for VOs that are allowed to login to the website.

	HELMHOLTZ_CLIENT_ID

	Client id for the Helmholtz AAI

	HELMHOLTZ_CLIENT_KWS

	Keyword argument for the oauth client to connect with the helmholtz AAI.

	HELMHOLTZ_CLIENT_SECRET

	Client secret for the Helmholtz AAI

	HELMHOLTZ_CREATE_USERS

	Flag to enable/disable user account creation via the Helmholtz AAI.

	HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED

	Allow duplicated emails for users in the website

	HELMHOLTZ_MAP_ACCOUNTS

	Flag whether existing user accounts should be mapped

	HELMHOLTZ_UPDATE_USERNAME

	Flag whether usernames should be updated from the Helmholtz AAI

	HELMHOLTZ_USERNAME_FIELDS

	Username fields in the userinfo

	
django_helmholtz_aai.app_settings.HELMHOLTZ_AAI_CONF_URL = 'https://login.helmholtz.de/oauth2/.well-known/openid-configuration'

	openid configuration url of the Helmholtz AAI

Can also be overwritten using the HELMHOLTZ_CLIENT_KWS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_ALLOWED_VOS: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = []

	A string of lists specifying which VOs are allowed to log into the website.

By default, this is an empty list meaning that each and every user
is allowed to login via the Helmholtz AAI. Each string in this list will be
interpreted as a regular expression and added to HELMHOLTZ_ALLOWED_VOS_REGEXP

Examples

Assume you only want to allow people from the Hereon VO to login to the
website. Then you can add the following to your settings.py:

HELMHOLTZ_ALLOWED_VOS = [
 "urn:geant:helmholtz.de:group:hereon#login.helmholtz.de",
]

or use a regex, e.g. something like:

HELMHOLTZ_ALLOWED_VOS = [
 r".*helmholtz.de:group:hereon#login.helmholtz.de",
]

	
django_helmholtz_aai.app_settings.HELMHOLTZ_ALLOWED_VOS_REGEXP: list [https://docs.python.org/3/library/stdtypes.html#list][re.Pattern] = []

	Regular expressions for VOs that are allowed to login to the website.

This attribute is created from the HELMHOLTZ_ALLOWED_VOS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_ID: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Client id for the Helmholtz AAI

This is the username you use to login at
https://login.helmholtz.de/oauthhome/, see [client-registration] for how to
create a client

See also

HELMHOLTZ_CLIENT_SECRET

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_KWS = {'client_id': None, 'client_kwargs': {'scope': 'profile email eduperson_unique_id'}, 'client_secret': None, 'server_metadata_url': 'https://login.helmholtz.de/oauth2/.well-known/openid-configuration'}

	Keyword argument for the oauth client to connect with the helmholtz AAI.

Can also be overwritten using the HELMHOLTZ_CLIENT_KWS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_SECRET: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Client secret for the Helmholtz AAI

This is the password you use to login at
https://login.helmholtz.de/oauthhome/, see[client-registration]_ for how to
create a client

See also

HELMHOLTZ_CLIENT_ID

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CREATE_USERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Flag to enable/disable user account creation via the Helmholtz AAI.

Use this flag if you want the Helmholtz AAI to create users when they login
for the first time. This is enabled by default.

If you disable this setting, you should enable the
HELMHOLTZ_MAP_ACCOUNTS, otherwise nobody will be allowed to
login via the Helmholtz AAI.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Allow duplicated emails for users in the website

This setting controls if a user can register with multiple accounts from the
Helmholtz AAI. An email is not unique in the AAI, but this might be desired
in the Django application. This option prevents a user to create an account
if the email has already been taken by some other user from the Helmholtz
AAI

	
django_helmholtz_aai.app_settings.HELMHOLTZ_MAP_ACCOUNTS: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Flag whether existing user accounts should be mapped

Use this flag, if you want to map existing user accounts by their email
address.

..setting:: HELMHOLTZ_MAP_ACCOUNTS

Examples

Suppose you just install django-helmholtz-aai to your already existing
Django project and there exists already a user with the mail
user@example.com. If this user now logs into your project, it would
create a new HelmholtzUser which is
probably not desired. To overcome this, you can set the
HELMHOLTZ_MAP_ACCOUNTS configuration variable to True and the
HelmholtzUser will be mapped to the
already existing User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]

	
django_helmholtz_aai.app_settings.HELMHOLTZ_UPDATE_USERNAME: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Flag whether usernames should be updated from the Helmholtz AAI

Use this setting to control, whether the usernames are updated automatically
on every login. If this is true, we will check the fields specified in the
HELMHOLTZ_USERNAME_FIELDS setting variable on every login and update
the username accordingly. If the user, for instance, changes his or her
preferred_username on https://login.helmholtz.de/, we will update the
username of the django user as well (if preferred_username is in the
HELMHOLTZ_USERNAME_FIELDS).

	
django_helmholtz_aai.app_settings.HELMHOLTZ_USERNAME_FIELDS: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = ['preferred_username', 'eduperson_unique_id']

	Username fields in the userinfo

This setting determines how to get the username. By default, we use the
preferred_username that the user can configure at
https://login.helmholtz.de/oauthhome. If this is already taken, we use the
unique eduperson_unique_id from the Helmholtz AAI. You can add more
variables to this list but you should always include the
eduperson_unique_id to make sure you do not end up with duplicated
usernames.

Examples

You can use the email instead of the preferred_username via:

HELMHOLTZ_USERNAME_FIELDS = ["email", "eduperson_unique_id"]

Signals

This module defines the signals that are fired by the views in
django_helmholtz_aai.views module.

	
django_helmholtz_aai.signals.aai_user_created = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user has been created via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a new
user has been created. Subscribers to this signal can accept the following
parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The new user that has been created

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.create_user

	
django_helmholtz_aai.signals.aai_user_logged_in = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user logs in via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a
user logged in via the Helmholtz AAI. Subscribers to this signal can accept
the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user who just logged in

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.login, django_helmholtz_aai.views.HelmholtzAuthentificationView.login_user

	
django_helmholtz_aai.signals.aai_user_updated = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user receives an update via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a
user who does already have an account gets updated, e.g. because the email
of the preferred_username changed in the Helmholtz AAI. Subscribers to
this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that is supposed to be updated

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.update_user

	
django_helmholtz_aai.signals.aai_vo_created = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a new Virtual Organization has been created

This signal is called by the
HelmholtzAuthentificationView when a
new virtual organization has been created from the Helmholtz AAI because a
of this VO registered on the website. Subscribers to
this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that is about to become a member of the new VO

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that has just been created

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

	
django_helmholtz_aai.signals.aai_vo_entered = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a Helmholtz AAI user enteres a VO

This signal is called by the
HelmholtzAuthentificationView when a
user enters a virtual organization as the user is a member in the Helmholtz
AAI. Subscribers to this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that entered the VO.

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that the user has just entered

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

	
django_helmholtz_aai.signals.aai_vo_left = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a Helmholtz AAI user left a VO

This signal is called by the
HelmholtzAuthentificationView when a
user leaves a virtual organization as the user is not anymore a member in
the Helmholtz AAI. Subscribers to this signal can accept the following
parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that entered the VO.

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that the user has just entered

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

URL config

URL patterns of the django-helmholtz-aai to be included via:

from django.urls import include, path

urlpatters = [
 path("helmholtz-aai/", include("django_helmholtz_aai.urls")),
]

Data:

	app_name

	App name for the django-helmholtz-aai to be used in calls to django.urls.reverse() [https://django.readthedocs.io/en/stable/ref/urlresolvers.html#django.urls.reverse]

	urlpatterns

	urlpattern for the Helmholtz AAI

	
django_helmholtz_aai.urls.app_name = 'django_helmholtz_aai'

	App name for the django-helmholtz-aai to be used in calls to
django.urls.reverse() [https://django.readthedocs.io/en/stable/ref/urlresolvers.html#django.urls.reverse]

	
django_helmholtz_aai.urls.urlpatterns = [<URLPattern 'login/' [name='login']>, <URLPattern 'auth/' [name='auth']>]

	urlpattern for the Helmholtz AAI

Models

Models to mimic users and virtual organizations of the Helmholtz AAI in Django.

Models:

	HelmholtzUser(*args, **kwargs)

	A User in the in the Helmholtz AAI.

	HelmholtzVirtualOrganization(*args, **kwargs)

	A VO in the Helmholtz AAI.

Classes:

	HelmholtzUserManager(*args, **kwargs)

	A manager for the helmholtz User.

	HelmholtzVirtualOrganizationManager(*args, ...)

	Database manager for the HelmholtzVirtualOrganization model.

	HelmholtzVirtualOrganizationQuerySet([...])

	A queryset with an extra command to remove empty VOs.

	
class django_helmholtz_aai.models.HelmholtzUser(*args, **kwargs)

	Bases: django.contrib.auth.models.User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]

A User in the in the Helmholtz AAI.

	Parameters

	
	id (AutoField) – Id

	password (CharField) – Password

	last_login (DateTimeField) – Last login

	is_superuser (BooleanField) – Superuser status. Designates that this user has all permissions without explicitly assigning them.

	username (CharField) – Username. Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.

	first_name (CharField) – First name

	last_name (CharField) – Last name

	email (EmailField) – Email address

	is_staff (BooleanField) – Staff status. Designates whether the user can log into this admin site.

	is_active (BooleanField) – Active. Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	date_joined (DateTimeField) – Date joined

	groups (ManyToManyField) – Groups. The groups this user belongs to. A user will get all permissions granted to each of their groups.

	user_permissions (ManyToManyField) – User permissions. Specific permissions for this user.

	user_ptr (OneToOneField to User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]) – User ptr

	eduperson_unique_id (CharField) – Eduperson unique id

Miscellaneous:

	DoesNotExist

	

	MultipleObjectsReturned

	

Model Fields:

	eduperson_unique_id

	Model field: eduperson unique id

	user_ptr

	Model field: user ptr, accesses the User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model.

Attributes:

	objects

	

	user_ptr_id

	Model field: user ptr

	
exception DoesNotExist

	Bases: django.contrib.auth.models.User.DoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.contrib.auth.models.User.MultipleObjectsReturned

	
eduperson_unique_id

	Model field: eduperson unique id

	
objects = <django_helmholtz_aai.models.HelmholtzUserManager object>

	

	
user_ptr

	Model field: user ptr, accesses the User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model.

	
user_ptr_id

	Model field: user ptr

	
class django_helmholtz_aai.models.HelmholtzUserManager(*args, **kwargs)

	Bases: django.contrib.auth.models.UserManager [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.UserManager]

A manager for the helmholtz User.

Methods:

	create_aai_user(userinfo)

	Create a user from the Helmholtz AAI userinfo.

	
create_aai_user(userinfo)

	Create a user from the Helmholtz AAI userinfo.

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganization(*args, **kwargs)

	Bases: django.contrib.auth.models.Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group]

A VO in the Helmholtz AAI.

	Parameters

	
	id (AutoField) – Id

	name (CharField) – Name

	permissions (ManyToManyField) – Permissions

	group_ptr (OneToOneField to Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group]) – Group ptr

	eduperson_entitlement (CharField) – Eduperson entitlement

Miscellaneous:

	DoesNotExist

	

	MultipleObjectsReturned

	

Attributes:

	display_name

	

	group_ptr_id

	Model field: group ptr

	objects

	

Model Fields:

	eduperson_entitlement

	Model field: eduperson entitlement

	group_ptr

	Model field: group ptr, accesses the Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group] model.

	
exception DoesNotExist

	Bases: django.contrib.auth.models.Group.DoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.contrib.auth.models.Group.MultipleObjectsReturned

	
property display_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
eduperson_entitlement

	Model field: eduperson entitlement

	
group_ptr

	Model field: group ptr, accesses the Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group] model.

	
group_ptr_id

	Model field: group ptr

	
objects = <django_helmholtz_aai.models.HelmholtzVirtualOrganizationManager object>

	

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganizationManager(*args, **kwargs)

	Bases: django.db.models.manager.GroupManagerFromHelmholtzVirtualOrganizationQuerySet

Database manager for the HelmholtzVirtualOrganization model.

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganizationQuerySet(model=None, query=None, using=None, hints=None)

	Bases: django.db.models.query.QuerySet [https://django.readthedocs.io/en/stable/ref/models/querysets.html#django.db.models.query.QuerySet]

A queryset with an extra command to remove empty VOs.

Methods:

	remove_empty_vos([exclude, without_confirmation])

	Remove empty virtual organizations.

	
remove_empty_vos(exclude: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], without_confirmation: bool [https://docs.python.org/3/library/functions.html#bool] = True) → list [https://docs.python.org/3/library/stdtypes.html#list][HelmholtzVirtualOrganization]

	Remove empty virtual organizations.

This method filters for virtual organizations in the queryset and
removes them.

	Parameters

	
	exclude (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of strings that will be interpreted as regular expressions.
If a eduperson_entitlement
matches any of these strings, it will not be removed.

	without_confirmation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (default), remove the VO without asking for confirmation
using python’s built-in input() [https://docs.python.org/3/library/functions.html#input] from the command-line.

	Returns

	The list of virtual organizations that have been removed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][HelmholtzVirtualOrganization]

Views

Views of the django_helmholtz_aai app to be imported via the url config (see
django_helmholtz_aai.urls). We define two views here: The
HelmholtzLoginView that redirects to the Helmholtz AAI, and the
HelmholtzAuthentificationView that handles the user login after
successful login at the Helmholtz AAI.

Classes:

	HelmholtzAuthentificationView(**kwargs)

	Authentification view for the Helmholtz AAI.

	HelmholtzLoginView(**kwargs)

	A login view for the Helmholtz AAI that forwards to the OAuth login.

	
class django_helmholtz_aai.views.HelmholtzAuthentificationView(**kwargs)

	Bases: django.contrib.auth.mixins.PermissionRequiredMixin [https://django.readthedocs.io/en/stable/topics/auth/default.html#django.contrib.auth.mixins.PermissionRequiredMixin], django.views.generic.base.View [https://django.readthedocs.io/en/stable/ref/class-based-views/base.html#django.views.generic.base.View]

Authentification view for the Helmholtz AAI.

Classes:

	PermissionDeniedReasons(value)

	Reasons why permissions are denied to login.

Attributes:

	aai_user

	

	is_new_user

	True if the Helmholtz AAI user has never logged in before.

	permission_denied_message_templates

	Message templates that explain why a user is not allowed to login.

	permission_denied_reason

	The reason why the user cannot login.

	userinfo

	The userinfo as obtained from the Helmholtz AAI.

Methods:

	create_user(userinfo)

	Create a Django user for a Helmholtz AAI User.

	get(request)

	Login the Helmholtz AAI user and update the data.

	get_permission_denied_message()

	Get the permission denied message for a specific reason.

	handle_no_permission()

	Handle the response if the permission has been denied.

	has_permission()

	Check if the user has permission to login.

	login_user(user)

	Login the Helmholtz AAI user to the Django Application.

	synchronize_vos()

	Synchronize the memberships in the virtual organizations.

	update_user()

	Update the user from the userinfo provided by the Helmholtz AAI.

	
class PermissionDeniedReasons(value)

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str], enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Reasons why permissions are denied to login.

Attributes:

	cannot_find_user

	a user with the given email could not be found

	email_changed_and_taken

	the email changed and is already taken on the website

	email_exists

	the user is new and the email already exists

	email_not_verified

	the email has not yet been verified

	new_user

	the user is new and user creation is disabled by HELMHOLTZ_CREATE_USERS

	vo_not_allowed

	the virtual organization is not part of HELMHOLTZ_ALLOWED_VOS_REGEXP

	
cannot_find_user = 'cannot_find_user'

	a user with the given email could not be found

	
email_changed_and_taken = 'email_changed_and_taken'

	the email changed and is already taken on the website

	
email_exists = 'email_exists'

	the user is new and the email already exists

	
email_not_verified = 'email_not_verified'

	the email has not yet been verified

	
new_user = 'new_user'

	the user is new and user creation is disabled by
HELMHOLTZ_CREATE_USERS

	
vo_not_allowed = 'vo_not_allowed'

	the virtual organization is not part of
HELMHOLTZ_ALLOWED_VOS_REGEXP

	
aai_user: models.HelmholtzUser

	

	
create_user(userinfo: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → django_helmholtz_aai.models.HelmholtzUser

	Create a Django user for a Helmholtz AAI User.

This method uses the
create_aai_user()
to create a new user.

Notes

Emits the aai_user_created signal

	
get(request)

	Login the Helmholtz AAI user and update the data.

This method logs in the aai user (or creates one if it does not exist
already). Afterwards we update the user info from the information on
the Helmholtz AAI using the update_user() and
synchronize_vos() methods.

	
get_permission_denied_message()

	Get the permission denied message for a specific reason.

This method is called by the super-classes handle_no_permission()
method.

	
handle_no_permission()

	Handle the response if the permission has been denied.

This reimplemented method adds the permission_denied_message
to the messages of the request using djangos messaging framework.

	
has_permission() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the user has permission to login.

This method checks, if the user belongs to the specified
HELMHOLTZ_ALLOWED_VOS and
verifies that the email does not exist (if this is desired, see
HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED
setting).

	
is_new_user

	True if the Helmholtz AAI user has never logged in before.

	
login_user(user: django_helmholtz_aai.models.HelmholtzUser)

	Login the Helmholtz AAI user to the Django Application.

Login is done via the top-level django_helmholtz_aai.login()
function.

Notes

Emits the aai_user_logged_in
signal

	
permission_denied_message_templates: dict [https://docs.python.org/3/library/stdtypes.html#dict][PermissionDeniedReasons, str [https://docs.python.org/3/library/stdtypes.html#str]] = {PermissionDeniedReasons.cannot_find_user: 'A user with the email {email} is not available on this website and the account creation is disabled. Please sign up or contact the website administrators.', PermissionDeniedReasons.email_changed_and_taken: 'You email in the Helmholtz AAI changed to {email}. A user with this email already exists and on this website. Please contact the website administrators.', PermissionDeniedReasons.email_exists: 'A user with the email {email} already exists.', PermissionDeniedReasons.email_not_verified: 'Your email has not been verified.', PermissionDeniedReasons.new_user: 'Your email {email} does not yet have a user account on this website and the account creation is disabled. Please sign up or contact the website administrators.', PermissionDeniedReasons.vo_not_allowed: 'Your virtual organizations are not allowed to log into this website.'}

	Message templates that explain why a user is not allowed to login.

via the Helmholtz AAI. Use in the get_permission_denied_message()
method.

	
permission_denied_reason: PermissionDeniedReasons

	The reason why the user cannot login.

This attribute is set via the has_permission() method

	
synchronize_vos()

	Synchronize the memberships in the virtual organizations.

This method checks the eduperson_entitlement of the AAI userinfo
and

	creates the missing virtual organizations

	removes the user from virtual organizations that he or she does not
belong to anymore

	adds the user to the virtual organizations that are new.

Notes

As we remove users from virtual organizations, this might end up in a
lot of VOs without any users. One can remove these VOs via:

python manage.py remove_empty_vos

Notes

Emits the aai_vo_created,
aai_vo_entered and
aai_vo_left signals.

	
update_user()

	Update the user from the userinfo provided by the Helmholtz AAI.

Notes

Emits the aai_user_updated signal

	
userinfo

	The userinfo as obtained from the Helmholtz AAI.

The attributes of this dictionary are determined by the Django
Helmholtz AAI 1

References

	1

	https://hifis.net/doc/helmholtz-aai/attributes/

	
class django_helmholtz_aai.views.HelmholtzLoginView(**kwargs)

	Bases: django.contrib.auth.views.LoginView [https://django.readthedocs.io/en/stable/topics/auth/default.html#django.contrib.auth.views.LoginView]

A login view for the Helmholtz AAI that forwards to the OAuth login.

Methods:

	get(request)

	Get the redirect URL to the Helmholtz AAI.

	post(request)

	Reimplemented post method to call get().

	
get(request)

	Get the redirect URL to the Helmholtz AAI.

	
post(request)

	Reimplemented post method to call get().

django_helmholtz_aai.management.commands package

Submodules

	Remove empty virtual organizations
	Named Arguments

Remove empty virtual organizations

This command can be used to automatically remove empty virtual organizations.

usage: python manage.py remove_empty_vos [-h] [-e EXCLUDE] [-y] [-db DATABASE]

Named Arguments

	-e, --exclude

	Exclude VOs that match the following pattern. This argument can be specified multiple times.

Default: []

	-y, --yes

	Remove the VOs without asking for confirmation.

Default: False

	-db, --database

	The Django database identifier (see settings.py), default: “default”

Default: “default”

Classes:

	Command([stdout, stderr, no_color, force_color])

	Django command to migrate the database.

	
class django_helmholtz_aai.management.commands.remove_empty_vos.Command(stdout=None, stderr=None, no_color=False, force_color=False)

	Bases: django.core.management.base.BaseCommand

Django command to migrate the database.

Methods:

	add_arguments(parser)

	Add connection arguments to the parser.

	handle(*args[, database, exclude, ...])

	Migrate the database.

Attributes:

	help

	

	
add_arguments(parser)

	Add connection arguments to the parser.

	
handle(*args, database: str [https://docs.python.org/3/library/stdtypes.html#str] = 'default', exclude: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], without_confirmation: bool [https://docs.python.org/3/library/functions.html#bool] = False, **options)

	Migrate the database.

	
help = 'Remove virtual organization of the helmholtz AAI without users.'

	

django_helmholtz_aai package

Django Helmholtz AAI

Generic Django app for connecting with the Helmholtz AAI.

Functions:

	login(request, user, userinfo)

	Login the helmholtz user into django.

	
django_helmholtz_aai.login(request, user: models.HelmholtzUser, userinfo: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any])

	Login the helmholtz user into django.

Notes

Emits the aai_user_logged_in signal

Subpackages

	django_helmholtz_aai.management package
	Subpackages
	django_helmholtz_aai.management.commands package
	Submodules

	django_helmholtz_aai.tests package
	Submodules

Submodules

	Admin interfaces

	App settings

	App config

	Models

	Signals

	URL config

	Views

django_helmholtz_aai.management package

Subpackages

	django_helmholtz_aai.management.commands package
	Submodules
	Remove empty virtual organizations
	Named Arguments

django_helmholtz_aai.management.commands package

Submodules

	Remove empty virtual organizations
	Named Arguments

Remove empty virtual organizations

This command can be used to automatically remove empty virtual organizations.

usage: python manage.py remove_empty_vos [-h] [-e EXCLUDE] [-y] [-db DATABASE]

Named Arguments

	-e, --exclude

	Exclude VOs that match the following pattern. This argument can be specified multiple times.

Default: []

	-y, --yes

	Remove the VOs without asking for confirmation.

Default: False

	-db, --database

	The Django database identifier (see settings.py), default: “default”

Default: “default”

Classes:

	Command([stdout, stderr, no_color, force_color])

	Django command to migrate the database.

	
class django_helmholtz_aai.management.commands.remove_empty_vos.Command(stdout=None, stderr=None, no_color=False, force_color=False)

	Bases: django.core.management.base.BaseCommand

Django command to migrate the database.

Methods:

	add_arguments(parser)

	Add connection arguments to the parser.

	handle(*args[, database, exclude, ...])

	Migrate the database.

Attributes:

	help

	

	
add_arguments(parser)

	Add connection arguments to the parser.

	
handle(*args, database: str [https://docs.python.org/3/library/stdtypes.html#str] = 'default', exclude: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], without_confirmation: bool [https://docs.python.org/3/library/functions.html#bool] = False, **options)

	Migrate the database.

	
help = 'Remove virtual organization of the helmholtz AAI without users.'

	

django_helmholtz_aai.tests package

Tests for the django_helmholtz_aai app.

Submodules

Admin interfaces

This module defines the django Helmholtz AAI Admin interfaces, based upon the
interfaces from django.contrib.auth.admin.

Classes:

	HelmholtzAAIUserAdmin(model, admin_site)

	

	HelmholtzVirtualOrganizationAdmin(model, ...)

	

	
class django_helmholtz_aai.admin.HelmholtzAAIUserAdmin(model, admin_site)

	Bases: django.contrib.auth.admin.UserAdmin

Attributes:

	list_display

	

	media

	

	
list_display = ('username', 'first_name', 'last_name', 'email', 'eduperson_unique_id', 'is_staff')

	

	
property media

	

	
class django_helmholtz_aai.admin.HelmholtzVirtualOrganizationAdmin(model, admin_site)

	Bases: django.contrib.auth.admin.GroupAdmin

Attributes:

	list_display

	

	media

	

	
list_display = ('name', 'eduperson_entitlement')

	

	
property media

	

App settings

This module defines the settings options for the django_helmholtz_aai app.

Data:

	HELMHOLTZ_AAI_CONF_URL

	openid configuration url of the Helmholtz AAI

	HELMHOLTZ_ALLOWED_VOS

	A string of lists specifying which VOs are allowed to log into the website.

	HELMHOLTZ_ALLOWED_VOS_REGEXP

	Regular expressions for VOs that are allowed to login to the website.

	HELMHOLTZ_CLIENT_ID

	Client id for the Helmholtz AAI

	HELMHOLTZ_CLIENT_KWS

	Keyword argument for the oauth client to connect with the helmholtz AAI.

	HELMHOLTZ_CLIENT_SECRET

	Client secret for the Helmholtz AAI

	HELMHOLTZ_CREATE_USERS

	Flag to enable/disable user account creation via the Helmholtz AAI.

	HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED

	Allow duplicated emails for users in the website

	HELMHOLTZ_MAP_ACCOUNTS

	Flag whether existing user accounts should be mapped

	HELMHOLTZ_UPDATE_USERNAME

	Flag whether usernames should be updated from the Helmholtz AAI

	HELMHOLTZ_USERNAME_FIELDS

	Username fields in the userinfo

	
django_helmholtz_aai.app_settings.HELMHOLTZ_AAI_CONF_URL = 'https://login.helmholtz.de/oauth2/.well-known/openid-configuration'

	openid configuration url of the Helmholtz AAI

Can also be overwritten using the HELMHOLTZ_CLIENT_KWS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_ALLOWED_VOS: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = []

	A string of lists specifying which VOs are allowed to log into the website.

By default, this is an empty list meaning that each and every user
is allowed to login via the Helmholtz AAI. Each string in this list will be
interpreted as a regular expression and added to HELMHOLTZ_ALLOWED_VOS_REGEXP

Examples

Assume you only want to allow people from the Hereon VO to login to the
website. Then you can add the following to your settings.py:

HELMHOLTZ_ALLOWED_VOS = [
 "urn:geant:helmholtz.de:group:hereon#login.helmholtz.de",
]

or use a regex, e.g. something like:

HELMHOLTZ_ALLOWED_VOS = [
 r".*helmholtz.de:group:hereon#login.helmholtz.de",
]

	
django_helmholtz_aai.app_settings.HELMHOLTZ_ALLOWED_VOS_REGEXP: list [https://docs.python.org/3/library/stdtypes.html#list][re.Pattern] = []

	Regular expressions for VOs that are allowed to login to the website.

This attribute is created from the HELMHOLTZ_ALLOWED_VOS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_ID: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Client id for the Helmholtz AAI

This is the username you use to login at
https://login.helmholtz.de/oauthhome/, see [client-registration] for how to
create a client

See also

HELMHOLTZ_CLIENT_SECRET

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_KWS = {'client_id': None, 'client_kwargs': {'scope': 'profile email eduperson_unique_id'}, 'client_secret': None, 'server_metadata_url': 'https://login.helmholtz.de/oauth2/.well-known/openid-configuration'}

	Keyword argument for the oauth client to connect with the helmholtz AAI.

Can also be overwritten using the HELMHOLTZ_CLIENT_KWS setting.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CLIENT_SECRET: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Client secret for the Helmholtz AAI

This is the password you use to login at
https://login.helmholtz.de/oauthhome/, see[client-registration]_ for how to
create a client

See also

HELMHOLTZ_CLIENT_ID

	
django_helmholtz_aai.app_settings.HELMHOLTZ_CREATE_USERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Flag to enable/disable user account creation via the Helmholtz AAI.

Use this flag if you want the Helmholtz AAI to create users when they login
for the first time. This is enabled by default.

If you disable this setting, you should enable the
HELMHOLTZ_MAP_ACCOUNTS, otherwise nobody will be allowed to
login via the Helmholtz AAI.

	
django_helmholtz_aai.app_settings.HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Allow duplicated emails for users in the website

This setting controls if a user can register with multiple accounts from the
Helmholtz AAI. An email is not unique in the AAI, but this might be desired
in the Django application. This option prevents a user to create an account
if the email has already been taken by some other user from the Helmholtz
AAI

	
django_helmholtz_aai.app_settings.HELMHOLTZ_MAP_ACCOUNTS: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Flag whether existing user accounts should be mapped

Use this flag, if you want to map existing user accounts by their email
address.

..setting:: HELMHOLTZ_MAP_ACCOUNTS

Examples

Suppose you just install django-helmholtz-aai to your already existing
Django project and there exists already a user with the mail
user@example.com. If this user now logs into your project, it would
create a new HelmholtzUser which is
probably not desired. To overcome this, you can set the
HELMHOLTZ_MAP_ACCOUNTS configuration variable to True and the
HelmholtzUser will be mapped to the
already existing User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]

	
django_helmholtz_aai.app_settings.HELMHOLTZ_UPDATE_USERNAME: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Flag whether usernames should be updated from the Helmholtz AAI

Use this setting to control, whether the usernames are updated automatically
on every login. If this is true, we will check the fields specified in the
HELMHOLTZ_USERNAME_FIELDS setting variable on every login and update
the username accordingly. If the user, for instance, changes his or her
preferred_username on https://login.helmholtz.de/, we will update the
username of the django user as well (if preferred_username is in the
HELMHOLTZ_USERNAME_FIELDS).

	
django_helmholtz_aai.app_settings.HELMHOLTZ_USERNAME_FIELDS: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = ['preferred_username', 'eduperson_unique_id']

	Username fields in the userinfo

This setting determines how to get the username. By default, we use the
preferred_username that the user can configure at
https://login.helmholtz.de/oauthhome. If this is already taken, we use the
unique eduperson_unique_id from the Helmholtz AAI. You can add more
variables to this list but you should always include the
eduperson_unique_id to make sure you do not end up with duplicated
usernames.

Examples

You can use the email instead of the preferred_username via:

HELMHOLTZ_USERNAME_FIELDS = ["email", "eduperson_unique_id"]

App config

App config for the django_helmholtz_aai app.

Classes:

	DjangoHelmholtzAaiConfig(app_name, app_module)

	

	
class django_helmholtz_aai.apps.DjangoHelmholtzAaiConfig(app_name, app_module)

	Bases: django.apps.config.AppConfig

Attributes:

	default_auto_field

	

	name

	

	
default_auto_field = 'django.db.models.BigAutoField'

	

	
name = 'django_helmholtz_aai'

	

Models

Models to mimic users and virtual organizations of the Helmholtz AAI in Django.

Models:

	HelmholtzUser(*args, **kwargs)

	A User in the in the Helmholtz AAI.

	HelmholtzVirtualOrganization(*args, **kwargs)

	A VO in the Helmholtz AAI.

Classes:

	HelmholtzUserManager(*args, **kwargs)

	A manager for the helmholtz User.

	HelmholtzVirtualOrganizationManager(*args, ...)

	Database manager for the HelmholtzVirtualOrganization model.

	HelmholtzVirtualOrganizationQuerySet([...])

	A queryset with an extra command to remove empty VOs.

	
class django_helmholtz_aai.models.HelmholtzUser(*args, **kwargs)

	Bases: django.contrib.auth.models.User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]

A User in the in the Helmholtz AAI.

	Parameters

	
	id (AutoField) – Id

	password (CharField) – Password

	last_login (DateTimeField) – Last login

	is_superuser (BooleanField) – Superuser status. Designates that this user has all permissions without explicitly assigning them.

	username (CharField) – Username. Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.

	first_name (CharField) – First name

	last_name (CharField) – Last name

	email (EmailField) – Email address

	is_staff (BooleanField) – Staff status. Designates whether the user can log into this admin site.

	is_active (BooleanField) – Active. Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	date_joined (DateTimeField) – Date joined

	groups (ManyToManyField) – Groups. The groups this user belongs to. A user will get all permissions granted to each of their groups.

	user_permissions (ManyToManyField) – User permissions. Specific permissions for this user.

	user_ptr (OneToOneField to User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User]) – User ptr

	eduperson_unique_id (CharField) – Eduperson unique id

Miscellaneous:

	DoesNotExist

	

	MultipleObjectsReturned

	

Model Fields:

	eduperson_unique_id

	Model field: eduperson unique id

	user_ptr

	Model field: user ptr, accesses the User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model.

Attributes:

	objects

	

	user_ptr_id

	Model field: user ptr

	
exception DoesNotExist

	Bases: django.contrib.auth.models.User.DoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.contrib.auth.models.User.MultipleObjectsReturned

	
eduperson_unique_id

	Model field: eduperson unique id

	
objects = <django_helmholtz_aai.models.HelmholtzUserManager object>

	

	
user_ptr

	Model field: user ptr, accesses the User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model.

	
user_ptr_id

	Model field: user ptr

	
class django_helmholtz_aai.models.HelmholtzUserManager(*args, **kwargs)

	Bases: django.contrib.auth.models.UserManager [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.UserManager]

A manager for the helmholtz User.

Methods:

	create_aai_user(userinfo)

	Create a user from the Helmholtz AAI userinfo.

	
create_aai_user(userinfo)

	Create a user from the Helmholtz AAI userinfo.

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganization(*args, **kwargs)

	Bases: django.contrib.auth.models.Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group]

A VO in the Helmholtz AAI.

	Parameters

	
	id (AutoField) – Id

	name (CharField) – Name

	permissions (ManyToManyField) – Permissions

	group_ptr (OneToOneField to Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group]) – Group ptr

	eduperson_entitlement (CharField) – Eduperson entitlement

Miscellaneous:

	DoesNotExist

	

	MultipleObjectsReturned

	

Attributes:

	display_name

	

	group_ptr_id

	Model field: group ptr

	objects

	

Model Fields:

	eduperson_entitlement

	Model field: eduperson entitlement

	group_ptr

	Model field: group ptr, accesses the Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group] model.

	
exception DoesNotExist

	Bases: django.contrib.auth.models.Group.DoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.contrib.auth.models.Group.MultipleObjectsReturned

	
property display_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
eduperson_entitlement

	Model field: eduperson entitlement

	
group_ptr

	Model field: group ptr, accesses the Group [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.Group] model.

	
group_ptr_id

	Model field: group ptr

	
objects = <django_helmholtz_aai.models.HelmholtzVirtualOrganizationManager object>

	

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganizationManager(*args, **kwargs)

	Bases: django.db.models.manager.GroupManagerFromHelmholtzVirtualOrganizationQuerySet

Database manager for the HelmholtzVirtualOrganization model.

	
class django_helmholtz_aai.models.HelmholtzVirtualOrganizationQuerySet(model=None, query=None, using=None, hints=None)

	Bases: django.db.models.query.QuerySet [https://django.readthedocs.io/en/stable/ref/models/querysets.html#django.db.models.query.QuerySet]

A queryset with an extra command to remove empty VOs.

Methods:

	remove_empty_vos([exclude, without_confirmation])

	Remove empty virtual organizations.

	
remove_empty_vos(exclude: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], without_confirmation: bool [https://docs.python.org/3/library/functions.html#bool] = True) → list [https://docs.python.org/3/library/stdtypes.html#list][HelmholtzVirtualOrganization]

	Remove empty virtual organizations.

This method filters for virtual organizations in the queryset and
removes them.

	Parameters

	
	exclude (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of strings that will be interpreted as regular expressions.
If a eduperson_entitlement
matches any of these strings, it will not be removed.

	without_confirmation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (default), remove the VO without asking for confirmation
using python’s built-in input() [https://docs.python.org/3/library/functions.html#input] from the command-line.

	Returns

	The list of virtual organizations that have been removed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][HelmholtzVirtualOrganization]

Signals

This module defines the signals that are fired by the views in
django_helmholtz_aai.views module.

	
django_helmholtz_aai.signals.aai_user_created = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user has been created via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a new
user has been created. Subscribers to this signal can accept the following
parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The new user that has been created

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.create_user

	
django_helmholtz_aai.signals.aai_user_logged_in = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user logs in via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a
user logged in via the Helmholtz AAI. Subscribers to this signal can accept
the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user who just logged in

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.login, django_helmholtz_aai.views.HelmholtzAuthentificationView.login_user

	
django_helmholtz_aai.signals.aai_user_updated = <django.dispatch.dispatcher.Signal object>

	Signal that is fired when a user receives an update via the Helmholtz AAI

This signal is called by the
HelmholtzAuthentificationView when a
user who does already have an account gets updated, e.g. because the email
of the preferred_username changed in the Helmholtz AAI. Subscribers to
this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that is supposed to be updated

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.update_user

	
django_helmholtz_aai.signals.aai_vo_created = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a new Virtual Organization has been created

This signal is called by the
HelmholtzAuthentificationView when a
new virtual organization has been created from the Helmholtz AAI because a
of this VO registered on the website. Subscribers to
this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that is about to become a member of the new VO

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that has just been created

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

	
django_helmholtz_aai.signals.aai_vo_entered = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a Helmholtz AAI user enteres a VO

This signal is called by the
HelmholtzAuthentificationView when a
user enters a virtual organization as the user is a member in the Helmholtz
AAI. Subscribers to this signal can accept the following parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that entered the VO.

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that the user has just entered

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

	
django_helmholtz_aai.signals.aai_vo_left = <django.dispatch.dispatcher.Signal object>

	Signal that is fired if a Helmholtz AAI user left a VO

This signal is called by the
HelmholtzAuthentificationView when a
user leaves a virtual organization as the user is not anymore a member in
the Helmholtz AAI. Subscribers to this signal can accept the following
parameters.

	Parameters

	
	sender (Type[django_helmholtz_aai.models.HelmholtzUser]) – The type who sent the signal (implemented for reasons of convention)

	user (django_helmholtz_aai.models.HelmholtzUser) – The user that entered the VO.

	vo (django_helmholtz_aai.models.HelmholtzVirtualOrganization) – The VO that the user has just entered

	request (Request) – The request holding the session of the user.

	userinfo (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – The userinfo as obtained from the Helmholtz AAI

See also

django_helmholtz_aai.views.HelmholtzAuthentificationView.synchronize_vos

URL config

URL patterns of the django-helmholtz-aai to be included via:

from django.urls import include, path

urlpatters = [
 path("helmholtz-aai/", include("django_helmholtz_aai.urls")),
]

Data:

	app_name

	App name for the django-helmholtz-aai to be used in calls to django.urls.reverse() [https://django.readthedocs.io/en/stable/ref/urlresolvers.html#django.urls.reverse]

	urlpatterns

	urlpattern for the Helmholtz AAI

	
django_helmholtz_aai.urls.app_name = 'django_helmholtz_aai'

	App name for the django-helmholtz-aai to be used in calls to
django.urls.reverse() [https://django.readthedocs.io/en/stable/ref/urlresolvers.html#django.urls.reverse]

	
django_helmholtz_aai.urls.urlpatterns = [<URLPattern 'login/' [name='login']>, <URLPattern 'auth/' [name='auth']>]

	urlpattern for the Helmholtz AAI

Views

Views of the django_helmholtz_aai app to be imported via the url config (see
django_helmholtz_aai.urls). We define two views here: The
HelmholtzLoginView that redirects to the Helmholtz AAI, and the
HelmholtzAuthentificationView that handles the user login after
successful login at the Helmholtz AAI.

Classes:

	HelmholtzAuthentificationView(**kwargs)

	Authentification view for the Helmholtz AAI.

	HelmholtzLoginView(**kwargs)

	A login view for the Helmholtz AAI that forwards to the OAuth login.

	
class django_helmholtz_aai.views.HelmholtzAuthentificationView(**kwargs)

	Bases: django.contrib.auth.mixins.PermissionRequiredMixin [https://django.readthedocs.io/en/stable/topics/auth/default.html#django.contrib.auth.mixins.PermissionRequiredMixin], django.views.generic.base.View [https://django.readthedocs.io/en/stable/ref/class-based-views/base.html#django.views.generic.base.View]

Authentification view for the Helmholtz AAI.

Classes:

	PermissionDeniedReasons(value)

	Reasons why permissions are denied to login.

Attributes:

	aai_user

	

	is_new_user

	True if the Helmholtz AAI user has never logged in before.

	permission_denied_message_templates

	Message templates that explain why a user is not allowed to login.

	permission_denied_reason

	The reason why the user cannot login.

	userinfo

	The userinfo as obtained from the Helmholtz AAI.

Methods:

	create_user(userinfo)

	Create a Django user for a Helmholtz AAI User.

	get(request)

	Login the Helmholtz AAI user and update the data.

	get_permission_denied_message()

	Get the permission denied message for a specific reason.

	handle_no_permission()

	Handle the response if the permission has been denied.

	has_permission()

	Check if the user has permission to login.

	login_user(user)

	Login the Helmholtz AAI user to the Django Application.

	synchronize_vos()

	Synchronize the memberships in the virtual organizations.

	update_user()

	Update the user from the userinfo provided by the Helmholtz AAI.

	
class PermissionDeniedReasons(value)

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str], enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Reasons why permissions are denied to login.

Attributes:

	cannot_find_user

	a user with the given email could not be found

	email_changed_and_taken

	the email changed and is already taken on the website

	email_exists

	the user is new and the email already exists

	email_not_verified

	the email has not yet been verified

	new_user

	the user is new and user creation is disabled by HELMHOLTZ_CREATE_USERS

	vo_not_allowed

	the virtual organization is not part of HELMHOLTZ_ALLOWED_VOS_REGEXP

	
cannot_find_user = 'cannot_find_user'

	a user with the given email could not be found

	
email_changed_and_taken = 'email_changed_and_taken'

	the email changed and is already taken on the website

	
email_exists = 'email_exists'

	the user is new and the email already exists

	
email_not_verified = 'email_not_verified'

	the email has not yet been verified

	
new_user = 'new_user'

	the user is new and user creation is disabled by
HELMHOLTZ_CREATE_USERS

	
vo_not_allowed = 'vo_not_allowed'

	the virtual organization is not part of
HELMHOLTZ_ALLOWED_VOS_REGEXP

	
aai_user: models.HelmholtzUser

	

	
create_user(userinfo: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → django_helmholtz_aai.models.HelmholtzUser

	Create a Django user for a Helmholtz AAI User.

This method uses the
create_aai_user()
to create a new user.

Notes

Emits the aai_user_created signal

	
get(request)

	Login the Helmholtz AAI user and update the data.

This method logs in the aai user (or creates one if it does not exist
already). Afterwards we update the user info from the information on
the Helmholtz AAI using the update_user() and
synchronize_vos() methods.

	
get_permission_denied_message()

	Get the permission denied message for a specific reason.

This method is called by the super-classes handle_no_permission()
method.

	
handle_no_permission()

	Handle the response if the permission has been denied.

This reimplemented method adds the permission_denied_message
to the messages of the request using djangos messaging framework.

	
has_permission() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the user has permission to login.

This method checks, if the user belongs to the specified
HELMHOLTZ_ALLOWED_VOS and
verifies that the email does not exist (if this is desired, see
HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED
setting).

	
is_new_user

	True if the Helmholtz AAI user has never logged in before.

	
login_user(user: django_helmholtz_aai.models.HelmholtzUser)

	Login the Helmholtz AAI user to the Django Application.

Login is done via the top-level django_helmholtz_aai.login()
function.

Notes

Emits the aai_user_logged_in
signal

	
permission_denied_message_templates: dict [https://docs.python.org/3/library/stdtypes.html#dict][PermissionDeniedReasons, str [https://docs.python.org/3/library/stdtypes.html#str]] = {PermissionDeniedReasons.cannot_find_user: 'A user with the email {email} is not available on this website and the account creation is disabled. Please sign up or contact the website administrators.', PermissionDeniedReasons.email_changed_and_taken: 'You email in the Helmholtz AAI changed to {email}. A user with this email already exists and on this website. Please contact the website administrators.', PermissionDeniedReasons.email_exists: 'A user with the email {email} already exists.', PermissionDeniedReasons.email_not_verified: 'Your email has not been verified.', PermissionDeniedReasons.new_user: 'Your email {email} does not yet have a user account on this website and the account creation is disabled. Please sign up or contact the website administrators.', PermissionDeniedReasons.vo_not_allowed: 'Your virtual organizations are not allowed to log into this website.'}

	Message templates that explain why a user is not allowed to login.

via the Helmholtz AAI. Use in the get_permission_denied_message()
method.

	
permission_denied_reason: PermissionDeniedReasons

	The reason why the user cannot login.

This attribute is set via the has_permission() method

	
synchronize_vos()

	Synchronize the memberships in the virtual organizations.

This method checks the eduperson_entitlement of the AAI userinfo
and

	creates the missing virtual organizations

	removes the user from virtual organizations that he or she does not
belong to anymore

	adds the user to the virtual organizations that are new.

Notes

As we remove users from virtual organizations, this might end up in a
lot of VOs without any users. One can remove these VOs via:

python manage.py remove_empty_vos

Notes

Emits the aai_vo_created,
aai_vo_entered and
aai_vo_left signals.

	
update_user()

	Update the user from the userinfo provided by the Helmholtz AAI.

Notes

Emits the aai_user_updated signal

	
userinfo

	The userinfo as obtained from the Helmholtz AAI.

The attributes of this dictionary are determined by the Django
Helmholtz AAI 1

References

	1

	https://hifis.net/doc/helmholtz-aai/attributes/

	
class django_helmholtz_aai.views.HelmholtzLoginView(**kwargs)

	Bases: django.contrib.auth.views.LoginView [https://django.readthedocs.io/en/stable/topics/auth/default.html#django.contrib.auth.views.LoginView]

A login view for the Helmholtz AAI that forwards to the OAuth login.

Methods:

	get(request)

	Get the redirect URL to the Helmholtz AAI.

	post(request)

	Reimplemented post method to call get().

	
get(request)

	Get the redirect URL to the Helmholtz AAI.

	
post(request)

	Reimplemented post method to call get().

Contribution and development hints

The django-helmholtz-aai project is developed by the
Helmholtz Coastal Data Center (HCDC) [https://hcdc.hereon.de] of the Helmholtz-Zentrum Hereon [https://www.hereon.de]. It
is open-source as we believe that this package can be helpful for multiple
other django applications, and we are looking forward for your feedback,
questions and especially for your contributions.

	If you want to ask a question, are missing a feature or have comments on the
docs, please open an issue at the source code repository [https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai/issues/new/]

	If you have suggestions for improvement, please let us know in an issue, or
fork the repository and create a merge request. See also Contributing in the development.

Contributing in the development

Thanks for your wish to contribute to this app!! The source code of the
django-helmholtz-aai package is hosted at
https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai. It’s an open gitlab
where you can register via GitHub, or via the Helmholtz AAI. Once you created
an account, you can fork [https://gitlab.hzdr.de/hcdc/django/django-helmholtz-aai/-/forks/new] this repository to your own user account and
implement the changes. Afterwards, please make a merge request into the main
repository. If you have any questions, please do not hesitate to create an
issue on gitlab and contact the developers.

Once you created you fork, you can clone it via

git clone https://gitlab.hzdr.de/<your-user>/django-helmholtz-aai.git

and install it in development mode with the [dev] option via:

pip install -e ./django-helmholtz-aai/[dev]

Once you installed the package, run the migrations:

cd django-helmholtz-aai/
python manage.py migrate

which will create an sqlite-database for you.

Fixing the docs

The documentation for this package is written in restructured Text and built
with sphinx [https://www.sphinx-doc.org] and deployed on readthedocs [https://readthedocs.org].

If you found something in the docs that you want to fix, head over to the
docs folder and build the docs with make html (or make.bat on windows).
The docs are then available in docs/_build/html/index.html that you can
open with your local browser.

Implement your fixes in the corresponding .rst-file and push them to your
fork on gitlab.

Contributing to the code

We use automated formatters (see their config in pyproject.toml and
setup.cfg), namely

	Black [https://black.readthedocs.io/en/stable/] for standardized
code formatting

	blackdoc [https://blackdoc.readthedocs.io/en/stable/] for
standardized code formatting in documentation

	Flake8 [http://flake8.pycqa.org/en/latest/] for general code
quality

	isort [https://github.com/PyCQA/isort] for standardized order in
imports.

	mypy [http://mypy-lang.org/] for static type checking on
type hints [https://docs.python.org/3/library/typing.html]

We highly recommend that you setup
pre-commit hooks [https://pre-commit.com/] to automatically run all the
above tools every time you make a git commit. This can be done by running:

pre-commit install

from the root of the repository. You can skip the pre-commit checks with
git commit --no-verify but note that the CI will fail if it
encounters any formatting errors.

You can also run the pre-commit step manually by invoking:

pre-commit run --all-files

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_helmholtz_aai	

 	
 	
 django_helmholtz_aai.admin	

 	
 	
 django_helmholtz_aai.app_settings	

 	
 	
 django_helmholtz_aai.apps	

 	
 	
 django_helmholtz_aai.management	

 	
 	
 django_helmholtz_aai.management.commands	

 	
 	
 django_helmholtz_aai.management.commands.remove_empty_vos	

 	
 	
 django_helmholtz_aai.models	

 	
 	
 django_helmholtz_aai.signals	

 	
 	
 django_helmholtz_aai.tests	

 	
 	
 django_helmholtz_aai.urls	

 	
 	
 django_helmholtz_aai.views	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V

A

 	
 	aai_user (django_helmholtz_aai.views.HelmholtzAuthentificationView attribute)

 	
 aai_user_created

 	signal

 	aai_user_created (in module django_helmholtz_aai.signals)

 	
 aai_user_logged_in

 	signal

 	aai_user_logged_in (in module django_helmholtz_aai.signals)

 	
 aai_user_updated

 	signal

 	aai_user_updated (in module django_helmholtz_aai.signals)

 	
 	
 aai_vo_created

 	signal

 	aai_vo_created (in module django_helmholtz_aai.signals)

 	
 aai_vo_entered

 	signal

 	aai_vo_entered (in module django_helmholtz_aai.signals)

 	
 aai_vo_left

 	signal

 	aai_vo_left (in module django_helmholtz_aai.signals)

 	add_arguments() (django_helmholtz_aai.management.commands.remove_empty_vos.Command method)

 	app_name (in module django_helmholtz_aai.urls)

C

 	
 	cannot_find_user (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

 	Command (class in django_helmholtz_aai.management.commands.remove_empty_vos)

 	
 	create_aai_user() (django_helmholtz_aai.models.HelmholtzUserManager method)

 	create_user() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

D

 	
 	default_auto_field (django_helmholtz_aai.apps.DjangoHelmholtzAaiConfig attribute)

 	display_name (django_helmholtz_aai.models.HelmholtzVirtualOrganization property)

 	
 django_helmholtz_aai

 	module

 	
 django_helmholtz_aai.admin

 	module

 	
 django_helmholtz_aai.app_settings

 	module

 	
 django_helmholtz_aai.apps

 	module

 	
 django_helmholtz_aai.management

 	module

 	
 django_helmholtz_aai.management.commands

 	module

 	
 	
 django_helmholtz_aai.management.commands.remove_empty_vos

 	module

 	
 django_helmholtz_aai.models

 	module

 	
 django_helmholtz_aai.signals

 	module

 	
 django_helmholtz_aai.tests

 	module

 	
 django_helmholtz_aai.urls

 	module

 	
 django_helmholtz_aai.views

 	module

 	DjangoHelmholtzAaiConfig (class in django_helmholtz_aai.apps)

E

 	
 	eduperson_entitlement (django_helmholtz_aai.models.HelmholtzVirtualOrganization attribute)

 	eduperson_unique_id (django_helmholtz_aai.models.HelmholtzUser attribute)

 	
 	email_changed_and_taken (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

 	email_exists (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

 	email_not_verified (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

G

 	
 	get() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

 	(django_helmholtz_aai.views.HelmholtzLoginView method)

 	
 	get_permission_denied_message() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

 	group_ptr (django_helmholtz_aai.models.HelmholtzVirtualOrganization attribute)

 	group_ptr_id (django_helmholtz_aai.models.HelmholtzVirtualOrganization attribute)

H

 	
 	handle() (django_helmholtz_aai.management.commands.remove_empty_vos.Command method)

 	handle_no_permission() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

 	has_permission() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

 	
 HELMHOLTZ_AAI_CONF_URL

 	setting

 	HELMHOLTZ_AAI_CONF_URL (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_ALLOWED_VOS

 	setting

 	HELMHOLTZ_ALLOWED_VOS (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_ALLOWED_VOS_REGEXP

 	setting

 	HELMHOLTZ_ALLOWED_VOS_REGEXP (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_CLIENT_ID

 	setting

 	HELMHOLTZ_CLIENT_ID (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_CLIENT_KWS

 	setting

 	HELMHOLTZ_CLIENT_KWS (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_CLIENT_SECRET

 	setting

 	HELMHOLTZ_CLIENT_SECRET (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_CREATE_USERS

 	setting

 	HELMHOLTZ_CREATE_USERS (in module django_helmholtz_aai.app_settings)

 	
 	
 HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED

 	setting

 	HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED (in module django_helmholtz_aai.app_settings)

 	HELMHOLTZ_MAP_ACCOUNTS (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_UPDATE_USERNAME

 	setting

 	HELMHOLTZ_UPDATE_USERNAME (in module django_helmholtz_aai.app_settings)

 	
 HELMHOLTZ_USERNAME_FIELDS

 	setting

 	HELMHOLTZ_USERNAME_FIELDS (in module django_helmholtz_aai.app_settings)

 	HelmholtzAAIUserAdmin (class in django_helmholtz_aai.admin)

 	HelmholtzAuthentificationView (class in django_helmholtz_aai.views)

 	HelmholtzAuthentificationView.PermissionDeniedReasons (class in django_helmholtz_aai.views)

 	HelmholtzLoginView (class in django_helmholtz_aai.views)

 	HelmholtzUser (class in django_helmholtz_aai.models)

 	HelmholtzUser.DoesNotExist

 	HelmholtzUser.MultipleObjectsReturned

 	HelmholtzUserManager (class in django_helmholtz_aai.models)

 	HelmholtzVirtualOrganization (class in django_helmholtz_aai.models)

 	HelmholtzVirtualOrganization.DoesNotExist

 	HelmholtzVirtualOrganization.MultipleObjectsReturned

 	HelmholtzVirtualOrganizationAdmin (class in django_helmholtz_aai.admin)

 	HelmholtzVirtualOrganizationManager (class in django_helmholtz_aai.models)

 	HelmholtzVirtualOrganizationQuerySet (class in django_helmholtz_aai.models)

 	help (django_helmholtz_aai.management.commands.remove_empty_vos.Command attribute)

I

 	
 	is_new_user (django_helmholtz_aai.views.HelmholtzAuthentificationView attribute)

L

 	
 	list_display (django_helmholtz_aai.admin.HelmholtzAAIUserAdmin attribute)

 	(django_helmholtz_aai.admin.HelmholtzVirtualOrganizationAdmin attribute)

 	
 	login() (in module django_helmholtz_aai)

 	login_user() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

M

 	
 	media (django_helmholtz_aai.admin.HelmholtzAAIUserAdmin property)

 	(django_helmholtz_aai.admin.HelmholtzVirtualOrganizationAdmin property)

 	
 module

 	django_helmholtz_aai

 	django_helmholtz_aai.admin

 	django_helmholtz_aai.app_settings

 	django_helmholtz_aai.apps

 	django_helmholtz_aai.management

 	django_helmholtz_aai.management.commands

 	django_helmholtz_aai.management.commands.remove_empty_vos

 	django_helmholtz_aai.models

 	django_helmholtz_aai.signals

 	django_helmholtz_aai.tests

 	django_helmholtz_aai.urls

 	django_helmholtz_aai.views

N

 	
 	name (django_helmholtz_aai.apps.DjangoHelmholtzAaiConfig attribute)

 	
 	new_user (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

O

 	
 	objects (django_helmholtz_aai.models.HelmholtzUser attribute)

 	(django_helmholtz_aai.models.HelmholtzVirtualOrganization attribute)

P

 	
 	permission_denied_message_templates (django_helmholtz_aai.views.HelmholtzAuthentificationView attribute)

 	
 	permission_denied_reason (django_helmholtz_aai.views.HelmholtzAuthentificationView attribute)

 	post() (django_helmholtz_aai.views.HelmholtzLoginView method)

R

 	
 	remove_empty_vos() (django_helmholtz_aai.models.HelmholtzVirtualOrganizationQuerySet method)

S

 	
 	
 setting

 	HELMHOLTZ_AAI_CONF_URL

 	HELMHOLTZ_ALLOWED_VOS

 	HELMHOLTZ_ALLOWED_VOS_REGEXP

 	HELMHOLTZ_CLIENT_ID

 	HELMHOLTZ_CLIENT_KWS

 	HELMHOLTZ_CLIENT_SECRET

 	HELMHOLTZ_CREATE_USERS

 	HELMHOLTZ_EMAIL_DUPLICATES_ALLOWED

 	HELMHOLTZ_UPDATE_USERNAME

 	HELMHOLTZ_USERNAME_FIELDS

 	
 	
 signal

 	aai_user_created

 	aai_user_logged_in

 	aai_user_updated

 	aai_vo_created

 	aai_vo_entered

 	aai_vo_left

 	synchronize_vos() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

U

 	
 	update_user() (django_helmholtz_aai.views.HelmholtzAuthentificationView method)

 	urlpatterns (in module django_helmholtz_aai.urls)

 	
 	user_ptr (django_helmholtz_aai.models.HelmholtzUser attribute)

 	user_ptr_id (django_helmholtz_aai.models.HelmholtzUser attribute)

 	userinfo (django_helmholtz_aai.views.HelmholtzAuthentificationView attribute)

V

 	
 	vo_not_allowed (django_helmholtz_aai.views.HelmholtzAuthentificationView.PermissionDeniedReasons attribute)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-helmholtz-aai’s documentation!

 		
 Installation

 		
 Installation from PyPi

 		
 Register your OAuth-Client at the Helmholtz AAI

 		
 Install the Django App for your project

 		
 References

 		
 Configuration options

 		
 Configuration settings

 		
 Most important settings

 		
 Other settings

 		
 Customizing the login

 		
 Configuration via Signals

 		
 Customization via the HelmholtzAuthentificationView

 		
 Common problems

 		
 Mapping to existing accounts

 		
 Mapping of multiple accounts

 		
 Too many VOs

 		
 API Reference

 		
 App settings

 		
 Signals

 		
 URL config

 		
 Models

 		
 Views

 		
 Management commands

 		
 Submodules

 		
 Contribution and development hints

 		
 Contributing in the development

 		
 Fixing the docs

 		
 Contributing to the code

